Arctic ozone loss deduced from POAM III satellite observations and the SLIMCAT chemical transport model

نویسندگان

  • C. S. Singleton
  • C. E. Randall
  • M. P. Chipperfield
  • S. Davies
  • W. Feng
  • R. M. Bevilacqua
  • K. W. Hoppel
  • M. D. Fromm
  • G. L. Manney
  • V. L. Harvey
چکیده

The SLIMCAT three-dimensional chemical transport model (CTM) is used to infer chemical ozone loss from Polar Ozone and Aerosol Measurement (POAM) III observations of stratospheric ozone during the Arctic winter of 2002–2003. Inferring chemical ozone loss from satellite data requires quantifying ozone variations due to dynamical processes. To accomplish this, the SLIMCAT model was run in a “passive” mode from early December until the middle of March. In these runs, ozone is treated as an inert, dynamical tracer. Chemical ozone loss is inferred by subtracting the model passive ozone, evaluated at the time and location of the POAM observations, from the POAM measurements themselves. This “CTM Passive Subtraction” technique relies on accurate initialization of the CTM and a realistic description of vertical/horizontal transport, both of which are explored in this work. The analysis suggests that chemical ozone loss during the 2002–2003 winter began in late December. This loss followed a prolonged period in which many polar stratospheric clouds were detected, and during which vortex air had been transported to sunlit latitudes. A series of stratospheric warming events starting in January hindered chemical ozone loss later in the winter of 2003. Nevertheless, by 15 March, the final date of the analysis, ozone loss maximized at 425 K at a value of about 1.2 ppmv, a moderate amount of loss compared to loss during the unusually cold winters in the late-1990s. SLIMCAT was also run with a detailed stratospheric chemistry scheme to obtain the modelpredicted loss. The SLIMCAT model simulation also shows Correspondence to: C. S. Singleton ([email protected]) a maximum ozone loss of 1.2 ppmv at 425 K, and the morphology of the loss calculated by SLIMCAT was similar to that inferred from the POAM data. These results from the recently updated version of SLIMCAT therefore give a much better quantitative description of polar chemical ozone loss than older versions of the same model. Both the inferred and modeled loss calculations show the early destruction in late December and the region of maximum loss descending in altitude through the remainder of the winter and early spring.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling the effect of denitrification on polar ozone depletion for Arctic winter 2004/2005

A three-dimensional (3-D) chemical transport model (CTM), SLIMCAT, has been used to quantify the effect of denitrification on ozone loss for the Arctic winter 2004/2005. The simulated HNO3 is found to be highly sensitive to the polar stratospheric cloud (PSC) scheme used in the model. Here the standard SLIMCAT full chemistry model, which uses a thermodynamic equilibrium PSC scheme, overpredicts...

متن کامل

Early unusual ozone loss during the Arctic winter 2002/2003 compared to other winters

Ozone loss during the winter 2002/2003 has been evaluated from comparisons between total ozone reported by the SAOZ network and simulated in passive mode by both REPROBUS and SLIMCAT. Despite the fact that the two models have a different approach to calculate the descent inside vortex, both evaluations provide similar results 18±4% using REPROBUS and 20±4% using SLIMCAT and show that the loss s...

متن کامل

Three - dimensional model study of the Arctic ozone loss in 2002 / 2003 and comparison with 1999 / 2000 and 2003 / 2004

We have used the SLIMCAT 3-D off-line chemical transport model (CTM) to quantify the Arctic chemical ozone loss in the year 2002/2003 and compare it with similar calculations for the winters 1999/2000 and 2003/2004. Recent changes to the CTM have improved the model’s ability to reproduce polar chemical and dynamical processes. The updated CTM uses σ -θ as a vertical coordinate which allows it t...

متن کامل

Vortex - averaged Arctic ozone depletion in the winter 2002 / 2003

A total ozone depletion of 68±7 Dobson units between 380 and 525 K from 10 December 2002 to 10 March 2003 is derived from ozone sonde data by the vortex-average method, taking into account both diabatic descent of the air masses and transport of air into the vortex. When the vortex is divided into three equal-area regions, the results are 85±9 DU for the collar region (closest to the edge), 52±...

متن کامل

4D-Var Assimilation of MIPAS chemical observations: ozone and nitrogen dioxide analyses

This paper discusses the global analyses of stratospheric ozone (O 3) and nitrogen dioxide (NO 2) obtained by the Belgian Assimilation System for Chemical Observations from Envisat (BASCOE). Based on a chemistry transport model (CTM) and the 4-dimensional variational (4D-Var) method, BASCOE has assimilated chemical obser-Our analyses are evaluated against assimilated MIPAS data and independent ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004